
基本信息
导师姓名:汪跃
担任职务:北京中关村学院 导师
主要研究领域:1. 强化学习算法研究(基础理论与算法创新): 强化学习算法的收敛性,泛化性,迁移性研究,探索算法,0 阶优化算法等算法的创新和效率研究,基于模型的强化学习算法;2. 强化学习驱动的大模型推理性能研究(推理能力的刻画,多模态推理):推理能力的刻画与优化,多模态大模型的推理能力研究,在自主科研智能体方面的应用;3. 强化学习在科学智能中的应用(流体力学,分子科学)。
简介:汪跃,概率论与数理统计专业博士学位,博士生导师为马志明院士。主要从事人工智能、强化学习等方面研究工作,研究聚焦于强化学习的算法有效性与算法效率,研究重点包括强化学习的基础理论,算法创新,以及在大模型和科学智能中的相关应用。
个人经历
教育经历:
2015-2020 概率论与数理统计 北京交通大学 博士
2011-2015 信息与计算科学 北京交通大学 本科
工作经历:
2025-至今 北京中关村学院 研究员
2022-2025 微软研究院 科学智能中心高级研究员
2020-2022 微软亚洲研究院 研究员
科学研究
代表性学术论文:
l Haodong Feng, Yue Wang, Dixia Fan. “How to Re-enable PDE Loss for Physical Systems Modeling Under Partial Observation” AAAI 2025.
l “Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation” TPAMI 2025
l Nian Ran, Peng Xiao, Yue Wang, Wesley Shi, Jianxin Lin, Qi Meng, Richard Allmendinger. “HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting” ICLR 2025.
l Peiyan Hu, Yue Wang, and Zhi-Ming Ma. "Better neural PDE solvers through data-free mesh movers." ICLR 2024.
l Haodong Feng, Yue Wang, Hui Xiang, Zhiyang Jin, and Dixia Fan. "How to Control Hydrodynamic Force on Fluidic Pinball via Deep Reinforcement Learning." Physics of Fluids. 35, no. 4. 2023.
l Jinhua Zhu, Yue Wang, Lijun Wu, Tao Qin, Wengang Zhou, Tie-Yan Liu, and Houqiang Li. "Making Better Decision by Directly Planning in Continuous Control." ICLR 2023.
l Xinquan Huang, Wenlei Shi, Qi Meng, Yue Wang, Xiaotian Gao, Jia Zhang, and Tie-Yan Liu. "NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition." ICML 2023.
l Chongchong Li, Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, and Tie-Yan Liu. "Gradient information matters in policy optimization by back-propagating through model." ICLR. 2022.
l Rui Zhang, Peiyan Hu, Qi Meng, Yue Wang, Rongchan Zhu, Bingguang Chen, Zhi-Ming Ma, and Tie-Yan Liu. "DRVN (deep random vortex network): A New Physics-Informed Machine Learning Method for Simulating and Inferring Incompressible Fluid Flows." Physics of Fluids. 34, no. 10. 2022.
l Yue Wang, Yuting Liu, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. "Target transfer Q-learning and its convergence analysis." Neurocomputing 392 (2020): 11-22.
l Yue Wang, Qi Meng, Wei Chen, Yuting Liu, Zhi-Ming Ma and Tie-Yan Liu. “Target Transfer Q-Learning and Its Convergence Analysis.” Neurocomputing 2020.
l Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, and Tie-Yan Liu. "Finite sample analysis of the GTD policy evaluation algorithms in Markov setting." NeurIPS 2017.
l Qi Meng, Yue Wang, Wei Chen, Taifeng Wang, Zhi-Ming Ma and Tie-Yan Liu. “Generalization Error Bounds for Optimization Algorithms via Stability.” AAAI 2017.